C TRANSMISSION/TRANSAXLE

SECTION

CL
 A

CLUTCH

CONTENTS

PRECAUTIONS 2
Caution 2
PREPARATION 3
Special Service Tools 3
Commercial Service Tools 3
NOISE, VIBRATION AND HARSHNESS (NVH) TROUBLESHOOTING 4
NVH Troubleshooting Chart 4
CLUTCH 4
CLUTCH PEDAL 5
On-Vehicle Inspection and Adjustment 5
Removal and Installation 6
REMOVAL 6
INSPECTION AFTER REMOVAL 6
INSTALLATION 6
CLUTCH FLUID 7
Bleeding 7
CLUTCH MASTER CYLINDER 8
Removal and Installation 8
REMOVAL 8
INSTALLATION 9
Disassembly and Assembly 9
DISASSEMBLY 9
INSPECTION AFTER DISASSEMBLY 10
ASSEMBLY 10
OPERATING CYLINDER 11
Removal and Installation 11
REMOVAL 11
INSTALLATION 11
Disassembly and Assembly 11
DISASSEMBLY 11
INSPECTION AFTER DISASSEMBLY 11
ASSEMBLY 11
CLUTCH PIPING 12
Removal and Installation 12
CLUTCH RELEASE MECHANISM 13
Removal and Installation 13
REMOVAL 13
INSPECTION AFTER REMOVAL 13
INSTALLATION 14
CLUTCH DISC, CLUTCH COVER 15
Removal and Installation 15
REMOVAL 15
INSPECTION AND ADJUSTMENT AFTER REMOVAL 15
INSTALLATION 16
SERVICE DATA AND SPECIFICATIONS (SDS) 17
Clutch Control System 17
Clutch Master Cylinder 17
Clutch Operating Cylinder 17
Clutch Disc 17
Clutch Cover 17
Clutch Pedal 17

PRECAUTIONS

PRECAUTIONS

Caution

- Recommended fluid is brake fluid "DOT 3".
- Never reuse drained brake fluid.
- Be careful not to splash brake fluid on painted areas.
- When removing and installing clutch piping, use Tool.
- Use new brake fluid to clean or wash all parts of master cylinder and operating cylinder.
- Never use mineral oils such as gasoline or kerosene. It will ruin the rubber parts of the hydraulic system.
WARNING:
After cleaning clutch disc, wipe it with a dust collector. Do not use compressed air.

PREPARATION

PREPARATION
Special Service Tools
The actual shapes of Kent-Moore tool may differ from those of special service tools illustrated here.

Tool number (Kent-Moore No.) Tool name		Description
KV30101400 a: $51 \mathrm{~mm}(2.01 \mathrm{in})$ dia. b: 44 mm (1.73 in) dia. Drift		Installing release bearing
ST20050240 (-) Diaphragm adjusting wrench	ZZA0508D	Adjusting unevenness of diaphragm spring of clutch cover
ST20670000 (-) a: $15 \mathrm{~mm}(0.59 \mathrm{in})$ dia. b: $23 \mathrm{~mm}(0.91 \mathrm{in})$ dia. Clutch aligning bar		Installing clutch disc

Commercial Service Tools

Tool name		Description
Pin punch Tip diameter: 4.5 mm (0.177 in) dia.		Removing and installing master cylinder spring pin
	ZZA0515D	
Power tool		Loosening bolts and nuts
1. Flare nut crowfoot 2. Torque wrench a: $10 \mathrm{~mm}(0.39 \mathrm{in})$		Removing and installing clutch piping

NOISE, VIBRATION AND HARSHNESS (NVH) TROUBLESHOOTING
NVH Troubleshooting Chart
Use the chart below to help you find the cause of the symptom. The numbers indicate the order of the inspection. If necessary, repair or replace these parts.

CLUTCH

Reference page																			
SUSPECTED PARTS (Possible cause)													$\begin{aligned} & \text { Ȳ } \\ & 0 \\ & \vdots \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \end{aligned}$				DIAPHRAGM SPRING (Out of tip alignment)		
Symptom	Clutch grabs/chatters					1			2			2	2	2			2		
	Clutch pedal spongy		1	2	2														
	Clutch noisy						1												
	Clutch slips	1										2	2			3		4	5
	Clutch does not disengage	1	2	3	4			5	5	5	5	5			5	6	6	7	

CLUTCH PEDAL

On-Vehicle Inspection and Adjustment

1. Check to see if the clevis pin floats freely in the bore of the clutch pedal. It should not be bound by the clevis or clutch pedal.
a. If the clevis pin is not free, check that the ASCD clutch switch is not applying pressure to the clutch pedal causing the clevis pin to bind. To adjust, loosen lock nut and turn ASCD clutch switch.
b. Tighten the lock nut.
c. Verify that the clevis pin floats in the bore of the clutch pedal. It should not be bound by the clutch pedal.
d. If the clevis pin is still not free, remove the clevis pin and check for deformation or damage. Replace clevis pin if necessary. Leave pin removed for step 2.

2. Check clutch pedal stroke for free range of movement.
a. With the clevis pin removed, manually move the clutch pedal up and down to determine if it moves freely.
b. If any sticking is noted, replace the related parts (clutch pedal bracket, assist spring, bushing etc.) Reassemble the clutch pedal and re-verfity that the clevis pin floats freely in the bore of the clutch pedal.
3. Adjust clearance " C " while depressing clutch pedal fully.(With clutch interlock switch)

Clearance C : 0.1-1.0mm (0.004-0.039 in)

4. Check clutch hydraulic and system components (clutch master cylinder, clutch operating cylinder, clutch withdrawal lever, clutch release bearing, etc.) for sticking or binding.
a. If any sticking or binding noted, repair or replace related parts as necessary.
b. If hydraulic system repair was necessary, bleed the clutch hydraulic system. Refer to CL-7, "Bleeding" .

NOTE:

Do not use a vacuum assist or any other type of power bleeder on this system. Use of a vacuum assist or power bleeder will not purge all the air from the system.

Removal and Installation

NOTE:
Tighten the ASCD clutch switch lock nut to the specified torque after installing the clutch pedal assembly in the vehicle and adjusting the pedal height.

REMOVAL

1. Remove front kicking plate. Refer to El-39, "Removal and Installation" .
2. Remove foot-rest (driver). Refer to El-43, "Removal and Installation" .
3. Remove dash side finisher. Refer to El-39, "Removal and Installation".
4. Remove instrument lower driver panel. Refer to IP-10, "Component Parts Drawing" .
5. Remove VDC/TCS/ABS control unit. (VDC/TCS/ABS model) Refer to BRC-66, "Removal and Installation"
6. Remove the clutch interlock switch and ASCD clutch switch connector and harness.
7. Remove the snap pin and clevis pin.
8. Remove the pedal bracket mounting bolt and nuts and then remove the clutch pedal assembly.

INSPECTION AFTER REMOVAL

- Check clutch pedal for bend, damage, or a cracked weld. If bend, damage, or a cracked weld is found, replace the clutch pedal assembly.

INSTALLATION

To install, reverse the removal procedure, following the cautions below:

- Install clutch pedal assembly and adjust the pedal height. Tighten ASCD clutch switch lock nut to the specified torque.
- After installing the clutch interlock switch, adjust the switch position.

CLUTCH FLUID

CLUTCH FLUID

PFP:00017

Bleeding

CAUTION:

- Monitor fluid level in the reservoir tank to make sure it does not empty.
- Do not spill clutch fluid onto painted surfaces. If it spills, wipe up immediately and wash the affected area with water.
NOTE:
Do not use a vacuum assist or any other type of power bleeder on this system. Use of vacuum assist or power bleeder will not purge all the air from the system.

1. Fill the master cylinder reservoir tank with new clutch fluid.
2. Connect a transparent vinyl hose to the air bleeder.
3. Depress the clutch pedal quickly and fully a few times and hold it.
4. With clutch pedal depressed, open air bleeder.
5. Close air bleeder.
6. Release clutch pedal and wait for 5 seconds.
7. Repeat steps 3 to 6 until no bubbles can be observed in the brake fluid.
8. Tighten air bleeder to the specified torque. Refer to CL-11,
 "Removal and Installation" .

CLUTCH MASTER CYLINDER

Removal and Installation
ACsoo3LY

1. Nipple
2. Cylinder body
3. Clevis
4. Stopper ring
5. Piston assembly
6. Spring pin
7. Clamp
8. Packing
9. Clevis pin
10. Stopper
11. Return spring
12. Reservoir hose
13. Seat
14. Snap pin
15. Push rod
16. Reservoir seal

REMOVAL

1. Remove front kicking plate. Refer to El-39, "Removal and Installation" .
2. Remove foot-rest (driver).Refer to El-43, "Removal and Installation" .
3. Remove dash side finisher. Refer to El-39, "Removal and Installation" .
4. Remove instrument lower driver panel. Refer to IP-10, "Component Parts Drawing"
5. Remove VDC/TCS/ABS control unit. (VDC/TCS/ABS model) Refer toBRC-66, "Removal and Installation"
6. Remove snap pin and clevis pin from the clevis, and separate it from clutch pedal.
7. Remove clips, and remove hoodledge cover.
8. Drain clutch fluid in the reservoir tank and remove reservoir hose from nipple.

CAUTION:
Do not spill clutch fluid onto painted surfaces. If it spills, wipe up immediately and wash the affected area with water.
9. Remove the reservoir tank mounting nuts and then remove the reservoir tank.
10. Using a flare nut wrench, remove clutch tube.
11. First remove nuts on master cylinder assembly, and then master cylinder assembly from the vehicle.

CLUTCH MASTER CYLINDER

INSTALLATION

1. Connect clutch tube to master cylinder assembly and temporarily tighten flare nut.
2. Install master cylinder assembly and tighten mounting nuts to the specified torque. Refer to CL-8, "Removal and Installation".
3. Using a flare nut torque wrench, tighten clutch tube flare nut to the specified torque. Refer to CL-12. "Removal and Installation".
4. Install clevis to the clutch pedal, and fix clevis with clevis pin.
5. Install snap pin to the clevis pin.
6. Install reservoir hose to the nipple. Install the reservoir tank to the vehicle, and then tighten mounting nuts to the specified torque.

: $5.8 \mathrm{~N} \cdot \mathrm{~m}$ ($0.59 \mathrm{Kg}-\mathrm{m}, 51 \mathrm{in}-\mathrm{Ib})$

7. After completing this procedure, inspect and bleed the clutch tube. Refer to CL-5, "On-Vehicle Inspection and Adjustment" and CL-7, "Bleeding" .
8. Install hoodledge cover.
9. Install VDC/TCS/ABS control unit. (VDC/TCS/ABS model) Refer to BRC-66, "Removal and Installation" .
10. Install instrument lower driver panel. Refer to IP-10, "Component Parts Drawing" .

11. Install dash side finisher. Refer to El-39, "Removal and Installation".
12. Install foot-rest (driver). Refer to El-43, "Removal and Installation".
13. Install front kicking plate. Refer to El-39, "Removal and Installation" .

Disassembly and Assembly
 DISASSEMBLY

1. Using a pin punch, remove spring pin, nipple and reservoir seal from the cylinder body.

Tool number : Commercial service tool

2. Loosen push rod lock nut. Remove clevis and lock nut.
3. Remove the seat from the cylinder body.
4. Remove the stopper ring and stopper, then remove the push rod, piston assembly, and return spring from the cylinder body.
CAUTION:
Restrain the push rod while doing this because there is a danger the piston assembly will fly out of the cylinder body.

CLUTCH MASTER CYLINDER

INSPECTION AFTER DISASSEMBLY

Check for any of the conditions shown below. If any malfunction is found, replace the part concerned.

- Damaged cylinder internal wall, foreign matter, wear, corrosion, or pin hole
- Damaged or deformed nipple or reservoir tank
- Settling of the spring
- Cracked and deformed seat

ASSEMBLY

1. Apply rubber lubricant to internal surface of the cylinder body, sliding surface of piston assembly, and the piston cup. Insert return spring and piston assembly to the cylinder body.
2. Apply silicone grease to the push rod and install the stopper before installing the stopper ring. CAUTION:
Restrain the push rod while doing this because there is a danger the piston assembly will fly out of the master cylinder.
3. Install seat to the cylinder body.
4. Install clevis to the push rod and tighten lock nut to the specified torque. Refer to $\underline{C L-8, ~ " R e m o v a l ~ a n d ~}$ Installation".
5. Install reservoir seal and nipple to the cylinder body. Using a pin punch, install spring pin.

OPERATING CYLINDER
Removal and Installation

REMOVAL

1. Drain clutch fluid.

CAUTION:
Do not spill clutch fluid onto painted surfaces. If it spills, wipe up immediately and wash the affected area with water.
2. Remove clutch hose from the operating cylinder.
3. Remove operating cylinder mounting bolt and then remove heat insulator and operating cylinder from the vehicle.

INSTALLATION

To install, reverse the removal procedure, following the cautions below:

- Install hose with care so that it will not be bent or twisted. Refer to CL-12, "Removal and Installation" .
- After completing the procedure, bleed the clutch tube. Refer to CL-7, "Bleeding" .

Disassembly and Assembly
 DISASSEMBLY

- Remove dust cover and push rod. Remove piston assembly and piston spring from inside the cylinder body.

INSPECTION AFTER DISASSEMBLY

Check for any of the conditions shown below. If any malfunction is found, replace the part concerned.

- Damage to cylinder inner surface or piston sliding surface. Foreign matter, wear, corrosion, or pin hole
- Settling of the spring
- Cracked or deformed dust cover

ASSEMBLY

1. Apply rubber lubricant to cylinder body inner surface and rubber grease to the piston cup and piston. Insert piston assembly and piston spring into the cylinder body.
2. Apply rubber grease to dust cover and install push rod and dust cover.

CLUTCH PIPING

Removal and Installation

Carefully observe the following steps during clutch tube removal and installation.

- Do not spill clutch fluid onto painted surfaces. If it spills, wipe up immediately and wash the affected area with water.
- When fixing clutch hose to bracket, align clutch hose metal fittings with bracket positioning emboss and lock plate to secure. At this time, prevent twisting or damage of clutch hose. In addition, be careful not to damage clutch hose.
- Tighten clutch tube flare nut to the specified torque.

CAUTION:
Be careful not to damage flare nut and clutch tube.

- Tighten the union bolt to the specified torque. Refer to CL-11, "Removal and Installation".

CAUTION:

Do not reuse the copper washer.

- After installation, bleed the clutch tube. Refer to CL-7, "Bleeding" .

CLUTCH RELEASE MECHANISM

CLUTCH RELEASE MECHANISM PFP:30502 Removal and Installation

1. Holder spring
2. Release bearing sleeve
3. Withdrawal lever
4. Dust cover
5. Release bearing
6. Retainer spring

REMOVAL

1. Remove manual transmission from the vehicle. Refer to MT-19, "Removal and Installation from Vehicle".
2. Remove release bearing sleeve assembly, holder spring, and withdrawal lever from inside the clutch housing.
3. Remove dust cover.
4. Remove retainer spring from withdrawal lever.
5. Using a puller as shown in the figure, remove release bearing from release bearing sleeve.

INSPECTION AFTER REMOVAL

- If release bearing is seized, damaged, not properly centered or does not rotate smoothly, replace it.
- If contact surface of withdrawal lever is excessively worn out, replace it.
- If dust cover is cracked or deformed, replace it.

CLUTCH RELEASE MECHANISM

INSTALLATION

CAUTION:

- Be sure to apply grease to the points specified. Otherwise, noise, poor disengagement, or damage to the clutch may result. Excessive grease may cause slip or quiver. Wipe off any grease oozing from the parts.
- Be careful not to bring any grease into contact with the clutch disc facing, pressure plate surface, or flywheel surface.

1. Using a drift, install release bearing to release bearing sleeve.

Tool number : KV 30101400 (-)
CAUTION:
Press bearing inner race by pushing with a drift (special service tool).

2. Following the instructions below, apply grease to the specified points.

CAUTION:
Wipe off any old grease, debris, or powdery residue left on the surfaces.

- Evenly apply a 1 mm thick coating of recommended grease to withdrawal lever and release bearing sleeve or holder spring sliding surface.
- Apply recommended grease to ball pin contact surface of the withdrawal lever and inner slots of the release bearing. The grease surface should be level with the surrounding area.
- Evenly apply a thin coat of recommended grease to the release bearing sliding surface. Install release bearing. Wipe off any excess grease that oozes from the parts and then remove release bearing.

3. Install in the reverse order of the removal.

CAUTION:
Before installing manual transmission to the vehicle, check that each sliding surface slides smoothly by operating withdrawal lever.

CLUTCH DISC, CLUTCH COVER

CLUTCH DISC, CLUTCH COVER
Removal and Installation

1. Flywheel
2. Clutch disc
3. Clutch cover

CAUTION:

Be careful not to bring any grease into contact with the clutch disc facing, pressure plate surface, or flywheel surface.

REMOVAL

1. Remove manual transmission from the vehicle. Refer to MT-19, "Removal and Installation from Vehicle" .
2. Loosen clutch cover mounting bolts with power tool. Remove clutch cover and clutch disc.

INSPECTION AND ADJUSTMENT AFTER REMOVAL

Clutch Disc

- Measure circumference runout relative to the clutch disc center spline. If it is outside the specification, replace the clutch disc.

Runout limit/diameter of the area to be measured: 0.7 mm (0.028 in) or less $/ 240 \mathrm{~mm}$ (9.45 in) dia.

- Measure backlash for clutch disc spline and main drive shaft spline at the circumference of the disc. If it is outside the specified range, replace the clutch disc.

Maximum backlash of spline:
1.0 mm (0.039 in)

- Using calipers, measure the depth to the clutch disc facing rivet heads. If it exceeds the allowable wear limit, replace the clutch disc.

Facing wear limit (depth to the rivet head):
0.3 mm (0.012 in)

CLUTCH DISC, CLUTCH COVER

Clutch Cover

Check diaphragm spring lever claws for unevenness with the lever still on the vehicle. If they exceed the tolerance, adjust lever height using a diaphragm adjusting wrench.

Tolerance for diaphragm spring lever unevenness: 0.5 mm (0.02 in)

Tool number : ST 20050240 (-)

- Check clutch cover thrust ring for wear or breakage. If wear or breakage is found, replace clutch cover assembly.

NOTE:

- Worn thrust ring will generate a beating noise when tapped at the rivet with a hammer.
- Broken thrust ring will make a clinking sound when cover is shaken up and down.
- If a trace of burn or discoloration is found on the clutch cover pressure plate to clutch disc contact surface, repair the surface with sandpaper. If surface is damaged or distorted, replace the assembly.
INSTALLATION

1. Apply recommended grease to clutch disc and main drive shaft spline.

CAUTION:
Be sure to apply grease to the points specified. Otherwise, noise, poor disengagement, or damage to the clutch may result. Excessive grease may cause slip or quiver. Wipe off any grease oozing from the parts.
2. Install clutch disc and clutch cover. Pre-tighten mounting bolts and install clutch aligning bar.
3. Tighten clutch cover attaching bolts evenly in two steps in the order shown in the figure. Refer to CL-15, "Removal and Installation".

Tool number : ST20670000 (-)
4. Install manual transmission. Refer to MT-19, "Removal and Installation from Vehicle".

SERVICE DATA AND SPECIFICATIONS (SDS)
 Clutch Control System

Type of clutch control	Hydraulic

Unit: mm (in)

	Unit: mm (in)	
Inner diameter	$15.87(5 / 8)$	

Clutch Operating Cylinder
Unit: mm (in)

Inner diameter	$19.05(3 / 4)$	
Clutch Disc		UCsoosm8
		Unit: mm (in)
Engine model	250	
Model	$250 \times 170 \times 3.2(9.84 \times 6.69 \times 0.126)$	
Facing size (Outer dia. \times inner dia. \times thickness)	$0.3(0.012)$	
Wear limit (depth to the rivet head)	$0.7(0.028)$ or less/240 (9.45) dia.	
Runout limit/diameter of the area to be measured	$1.0(0.039)$	
Maximum backlash of spline (at outer edge disc)		

Clutch Cover

Engine model	VQ35DE
Model	250
Set-load	$8,630 \mathrm{~N}(880 \mathrm{~kg})$
Diaphragm spring lever height	$39.5-41.5(1.555-1.634)$
Uneven limit of diaphragm spring toe height	$0.5(0.02)$

Clutch Pedal

